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Abstract. We study a tight binding model including both on site disorder and coupling of the electrons to
randomly oriented magnetic moments. The transport properties are calculated via the Kubo-Greenwood
scheme, using the exact eigenstates of the disordered system and large system size extrapolation of the low
frequency optical conductivity. We first benchmark our method in the model with only structural disorder
and then use it to map out the transport regimes and metal-insulator transitions in problems involving
(i) scattering from random magnetic moments, and (ii) the combined effect of structural disorder and
magnetic scattering. We completely map out the dependence of the d.c conductivity on electron density
(n) the structural disorder (∆) and the magnetic coupling (J ′), and locate the insulator-metal phase
boundary in the space of n − ∆ − J ′. These results serve as a reference for understanding transport in
systems ranging from magnetic semiconductors to double exchange ‘colossal magnetoresistance’ systems.
A brief version of this study appears in our earlier paper Europhys. Lett. 65, 75 (2004).

PACS. 72.10.Bg General formulation of transport theory – 72.15.Qm Scattering mechanisms and Kondo
effect – 72.15.Rn Localization effects (Anderson or weak localization)

1 Introduction

The most commonly studied case of localisation pertains
to non interacting electrons in the background of struc-
tural disorder. There is a large body of work [1–4], an-
alytical and numerical, as well as experimental studies,
that have focused on this problem. The principal qualita-
tive result of these investigations is that in one and two
dimensions all electronic eigenstates are localised for arbi-
trarily weak disorder, while in three dimension we need a
critical disorder for complete localisation. In three dimen-
sion, at a given disorder, all states beyond an energy εc of
the band center are localised and the system is metallic or
insulating depending on whether the Fermi level, εF , lies
in the region of extended states or localised states. The
‘mobility edge’, εc, collapses to the band center as the dis-
order is increased, driving the Anderson metal-insulator
transition (MIT).

The presence of magnetic moments in a metal brings in
several new effects, depending on the strength of electron-
spin coupling (J ′), the concentration of moments (nmag),
the extent of disorder, and the ‘character’ (small or
large S) of the moment.
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In the ‘quantum limit’, 2S ∼ 1, and for antiferro-
magnetic coupling, the basic physics is contained in the
Kondo effect. For nmag � 1, the magnetic moments act
as ‘Kondo impurities’ whose effects [5] are now well under-
stood. For nmag ∼ 1, i.e., the concentrated Kondo limit,
there can be various phases depending on electron-spin
coupling and disorder. The ground state could be a non
magnetic ‘heavy Fermi liquid’ [6], or a spin glass [7], or a
magnetically ordered state [8]. The physics of these Kondo
lattice, with quantum spins, is a vast area of research.
In this paper, however, we will avoid the issues of heavy
fermion physics and focus instead on electron-spin systems
involving “large S”, i.e., effectively ‘classical’ moments.

For classical moments also, the effects vary depending
on nmag, electron density, J ′, and the extent of disorder.
A wide variety of magnetic systems [9–17] are described,
to a first approximation, by electrons locally coupled to d
or f moments, with 2S � 1, and moving in a structurally
disordered background. The magnetic ground state could
be ferromagnetic, or a more complicated ordered state,
or a spin glass. Transport often involves insulator-metal
transitions and colossal magnetoresistance. The simplest
Hamiltonian capturing these effects is:

H = −t
∑

〈ij〉,σ
c†iσcjσ +

∑

iσ

(εi − µ)niσ − J ′ ∑

ν

σν · Sν . (1)
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The t are nearest neighbour hopping on a simple cubic
lattice. The random on site potential, εi, is uniformly dis-
tributed between ±∆/2. The sites Rν are a subset of the
cubic lattice sites, Ri, and correspond to the magnetic
‘dopant’ locations. Even with this simple model there are
four dimensionless parameters in the problem. These are
disorder ∆/t, magnetic coupling J ′S/t, electron density n
(controlled by µ), and the ‘density’ of moments nmag. We
will eventually study the nmag = 1 case, but retain a more
general structure right now. We absorb S in our magnetic
coupling J ′, assuming |Si| = 1.

Real materials have band degeneracy and additional
interactions but the basic physics of several currently in-
teresting materials arise as limiting cases of the model
above. (i) The II-VI diluted magnetic semiconductor
[9–11] (DMS) Ga1−xMnxAs, exhibiting high ferromag-
netic Tc, correspond to nmag � 1, J ′/t ∼ 1, weak dis-
order, and low electron density, n < nmag. (ii) The Eu
based magnetic semiconductors [12,13], EuB6 etc., in-
volve nmag = 1, since every Eu atom has a moment,
J ′/t� 1, low carrier density, and possibly weak disorder.
(iii) The ‘colossal magnetoresistance’ (CMR) mangan-
ites [14], specifically La1−xSrxMnO3, involve nmag = 1,
J ′/t � 1, high electron density, and moderate ‘effective
disorder’. To describe the more strongly resistive mangan-
ites, the Ca doped systems, say, one requires additional
electron-phonon interactions. (iv) The amorphous mag-
netic semiconductor [15,16], a-GdxSi1−x, corresponds to
J ′/t � 1, ∆/t � 1, and nmag ∼ n ∼ O(0.1). Finally,
(v) the traditional metallic f electron magnets [17], cor-
respond to nmag = 1, and moderate to strong J ′.

The focus in the materials above is often on magnetism
rather than localisation effects. However, many of them
have rather large resistivity in the paramagnetic phase,
and a-GdSi, for example, shows a metal-insulator tran-
sition at T = 0 itself, on lowering carrier density. Since
there is no direct spin-spin interaction in these systems,
the local electron-spin coupling controls both the magnetic
properties and the character of the electronic state.

The intimate coupling between charge transport, lo-
calisation effects, and magnetism in these systems suggest
that we need to look beyond the traditional boundaries
separating ‘magnetism’ from transport and localisation
studies. A complete study of electronic resistivity as a
function of temperature, for any of the materials above,
requires a solution of the magnetic problem first. Since the
moments are assumed to be classical, the electrons can be
imagined to move in a static background comprising the
(quenched) structural disorder and annealed spin disorder.
Evaluating the distribution of the annealed disorder is a
non trivial problem, particularly in the strong coupling
(large J ′) context that is experimentally relevant. We will
touch upon this in the next section, but this paper is con-
cerned with transport and localisation effects in the fully
spin disordered phase. In this limit, we will present a com-
prehensive discussion of the resistivity arising from the

interplay of structural disorder and ‘paramagnetic’ scat-
tering, and map out the metal-insulator phase diagram in
terms of electron density, disorder and magnetic coupling.

There have been some studies of electronic transport
in the background of random spins and structural dis-
order, acting independently or together. Among these,
the Anderson localisation problem itself has been exten-
sively studied, via perturbation theory [18], self-consistent
schemes [19], numerical techniques [20], and mapping to a
field theory [21]. Most of the qualitative issues in this con-
text are essentially settled. Weak magnetic scattering in a
structurally disordered system has been studied [22,23] in
the early days of weak localisation (WL) theory to clar-
ify the ‘dephasing’ effect of electron spin flip on quantum
interference. In the opposite limit of strong coupling, cor-
responding to double exchange, localisation effects have
been studied [24] considering both magnetic and struc-
tural disorder.

These efforts still leave a large and interesting part of
∆ − J ′ space unexplored. To give a few examples, there
is no discussion of the following: (i) the resistivity from
purely magnetic scattering, as J ′ rises through the pertur-
bative regime to double exchange: this is the classic prob-
lem of paramagnetic scattering in ‘clean’ magnets, stud-
ied earlier at weak coupling [25,26]. (ii) the effect of spin
disorder on the Anderson transition, i.e., how the ‘anti-
localising’ effect of spin flip scattering, at weak disorder,
evolves into an insulator-metal transition (IMT). This is
an instance of Anderson transition with broken time rever-
sal symmetry, and (iii) the wide ‘middle’, where the effect
of neither ∆ nor J ′ is perturbative and their contribution
to the resistivity is not additive (i.e., violates Mathiessens
rule). This is the regime relevant to DMS, CMR materials,
and amorphous magnetic semiconductors.

The next section describes the transport calculation in
detail. Following that we present results on transport, suc-
cessively, in the structural disorder problem, the magnetic
disorder problem, and the simultaneous effect of both.
This paper follows up on our earlier short paper [27].

2 Computational scheme

Although we will work with random uncorrelated spins,
viewing the magnetic disorder as quenched, let us high-
light how the ‘true’ spin distribution can be evaluated,
and the limit where the background can be considered
random. Following that we describe our transport calcu-
lation method.

2.1 The spin distribution

The ‘structural’ variables εi are quenched, and have a
specified distribution, but the spin orientations Si are
not known a priori. The system chooses a spin configura-
tion, at T = 0, to optimise the total energy. To calculate
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the ‘true’ ground state properties, or finite temperature
transport, we need to solve for the spin distribution first
and then evaluate electronic properties in these spin back-
ground. Denoting the full spin configuration as {Si}, the
spin distribution P{Si} is given by:

P{Si} = Z−1Tre−βH

Z =
∫

DSiTre−βH

where Z is the full partition function of the system, and
the ‘trace’ is over fermionic variables. Equivalently, the
effective classical ‘Hamiltonian’ controlling the Boltzmann
weight for spins is:

Heff {Si} = − 1
β

log Tre−βH (2)

Heff is the fermion (free) energy in the background {Si}.
To make more sense of the formal expression above,

consider J ′/t� 1. In this case we can expand the fermion
(free) energy in powers of J ′. For a non disordered sys-
tem this leads to the standard RKKY coupling [28] be-
tween the classical spins, while the presence of struc-
tural disorder, leads to a ‘bond disordered’ RKKY model:
Heff ∼ ∑

ij JijSi ·Sj , where the exchange Jij are ∼J ′2χij

the χij being the non local spin response function of the
disordered, J ′ = 0, electron system. Having obtained the
effective spin Hamiltonian, the transport properties are to
be calculated by considering electron motion in the back-
grounds {εi,Si} where the {Si} are equilibrium configu-
rations of Heff for a specified realisation of disorder {εi}.

At strong coupling, i.e., large J ′, the fermion trace
cannot be analytically evaluated, and it is no longer pos-
sible to write an explicit spin Hamiltonian. We need spe-
cial techniques to anneal the spins. The magnetic order
and the complete transport properties in such (disordered)
Kondo lattice models is discussed elsewhere [29,30].

The complications of the magnetic problem can be
avoided if we assume a spin distribution. The simplest
distribution one can assume corresponds to uncorrelated
random spins. This is physically relevant in two limits.

(i) At sufficiently high temperature, compared to the
magnetic ordering scales in the problem, the spins are
essentially randomly fluctuating, with only short range
correlation. The magnetic ordering scale for J ′/t � 1
is ∼f1(n)J ′2/t, while for J ′/t � 1 the ordering scale is
∼f2(n)t, where f1 and f2 are electron density dependent
dimensionless coefficients and fmax

2 ∼ 0.1. Compared to
the typical Fermi energy, ∼zt, where z is the coordina-
tion number of the lattice, these scales are all small. We
use a T = 0 formulation for transport, i.e., we do not
use Fermi factors, but given the smallness of Tc/εF , our
results would be relevant even in the ‘real’ paramagnetic
phase. (ii) Another situation in which a random spin con-
figuration is appropriate is a ‘spin glass’, likely to occur in
strongly disordered systems [31]. There are always short

range correlations in a spin glass but if we ignore their ef-
fect on transport then at all temperature the transport in
such a system can be described, approximately, in terms
of a random spin background.

2.2 Conductivity calculation

In the linear response regime, the Kubo formula can be
used to calculate the conductivity of a system. The general
expression [32], involving matrix elements between many
body states, simplifies significantly for non-interacting
systems. This ‘Kubo-Greenwood’ result can be computed
purely in terms of single particle eigenfunctions and ener-
gies.

The numerical difficulty with this result lies in imple-
menting it for a finite size system, where the spectrum is
discrete, with gaps O(1/N), with N being the number of
sites in the system. Since the ‘d.c’ conductivity involves
transitions between essentially degenerate states at εF , it
cannot be calculated with control on small systems. As a
result, instead of computing the ‘Kubo conductivity’ it is
more usual to compute the ‘Landauer conductance’, G, of
a finite system coupled to leads [33], and infer the conduc-
tivity from the length dependence of G.

We pursue the Kubo approach, indirectly, through a
calculation of the low frequency optical conductivity for
a LT × LT × L geometry. The advantage of calculating
the conductivity this way is, (i) it ties in with diagonal-
isation that one may have to do for the magnetic prob-
lem, and (ii) it allows access to the optical conductivity,
without added effort, and can reveal the significantly non
Drude nature of σ(ω) at strong disorder. The principal
disadvantage is, this scheme cannot be pushed beyond
N ∼ 103–104, and is therefore not useful for accessing crit-
ical properties.

For disordered non interacting systems, the Kubo for-
mula, at T = 0, is:

σ(ω) =
A

N

∑

α,β

(nα − nβ)
|fαβ |2
εβ − εα

δ(ω − (εβ − εα)) (3)

with A = πe2/�a0, a0 being the lattice spacing, and nα =
θ(µ − εα). The fαβ are matrix elements of the current
operator jx = it

∑
i,σ(c†i+xa0,σci,σ − h.c), between exact

single particle eigenstates |ψα〉, |ψβ〉, etc, and εα, εβ are
the corresponding eigenvalues.

The conductivity above is prior to disorder averag-
ing. Notice that the δ function constraint cannot be sat-
isfied for arbitrary frequency in a finite system. So we
can neither calculate the d.c conductivity, σdc, directly,
nor estimate σ(ω) at some arbitrary externally specified
frequency. However, we can still calculate the ‘average’
conductivity over a frequency interval ∆ω, defined below,
and we use the following strategy to extract σdc.
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(i) The average of σ(ω) over the interval [0, ∆ω] is de-
fined as

σav(∆ω, µ,N) =
1
∆ω

∫ ∆ω

0

σ(ω, µ,N)dω (4)

∆ω can be set independent of N , but we will relate
them by fixing: ∆ω = B/N . We fix B by setting
∆ω = 0.04 for N = 1000. The mean finite size gap is
12/1000 ∼ 0.01, in 3d, much smaller than ∆ω.

(ii) σav is averaged over Nr realisations of disorder, to
generate σ̄av(∆ω, µ, L). The ‘noise’ in σ̄av(∆ω, µ, L)
falls slowly, as 1/

√
Nr. We use Nr ∼ 100 for the

largest sizes, to keep the computation reasonable, and
use a filter to smooth the data over a small window
in µ.

(iii) We study the σ̄av(∆ω, µ, L) for LT = 6 and the se-
quence L = 24 to L = 64 in increments of 8 and
extrapolate, σcalc(µ) = limL→∞ σ̄av(∆ω, µ, L). As
specified before, ∆ω = B/N .

To calculate the full, disorder averaged, optical conductiv-
ity we use the inversion: σ(ω) = σ̄av(ω) + ωdσ̄av/dω. The
σ(ω) results in this paper are mostly based on a 6×6×32
geometry.

3 Transport in the Anderson model

The metal-insulator phase boundary and the critical prop-
erties near the transition have been extensively stud-
ied [18–21] in the Anderson model. However, the actual
resistivity seems to have received much less attention. As
recently pointed out by Nikolic and Allen [34], there is a
wide regime in ∆, between the Born-Boltzmann end and
the scaling regime, where there are no analytic theories
of transport. We study this ‘old problem’ in some detail
because the wealth of existing results provides a bench-
mark for our method. There are very few exact results
with which we will be able to compare our data in the
magnetic scattering problems.

3.1 Global features

The ‘global features’ of transport and localisation in the
Anderson model are contained in Figures 1–3. The data
is obtained via the extrapolation procedure described ear-
lier. Figure 1a highlights the suppression in conductiv-
ity with increasing disorder, across the entire band. The
‘weakest’ disorder in this case, ∆ = 4, is probably already
outside the semiclassical Boltzmann regime. A naive ∆2

scaling of the resistivity still works, at the band center,
between ∆ = 4 and ∆ = 8, but the same extrapolated to
∆ = 16, would imply ρ(16)/ρ(4) ∼ 16, while the ratio is
actually ∼103. This figure captures the expected crossover
from moderate scattering, roughly following Boltzmann
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Fig. 1. Panel (a). Variation of conductivity with µ, and panel
(b). density of states, for several values of ∆.
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Fig. 2. Variation of conductivity with carrier density, for sev-
eral ∆, constructed from the σ(µ) and N(ε) data in Figure1.

scaling, to localisation as ∆→ ∆c ∼ 16.5, the critical dis-
order [35] at the band center. It also provides a glimpse
of how the ‘mobility edge’ moves with increasing disorder,
better quantified in Figure 3. Note that for data at a spec-
ified system size, L = 16, 32 etc., shown later, the notion
of a ‘mobility edge’ does not make sense, and all we ob-
serve is a crossover from small to large conductivity as µ
is varied. The change in σ(µ,L) with L, and the L → ∞
extrapolation, is crucial for identifying the mobility edge.

The DOS plot, Figure 1b, illustrates the band broad-
ening, and in Figure 3b we have compared our band edge
energy with earlier CPA results [36]. The (algebraic) aver-
age DOS is featureless and non critical and does not play
an interesting role in the problem.

Since the band broadens significantly with disorder,
σ(µ) by itself does not provide the density dependence of
the conductivity. Figure 2 takes into account the shift in
µ required to maintain constant density (with increasing
disorder) and shows σ(n). Our density is defined as aver-
age number of electrons per site, so nmax = 2. Since the
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Fig. 3. Main panel, (a), shows the variation in mobility edge
with disorder. We compare our results, circles, with earlier
work [36], triangles. Inset (b) shows the ‘band edge’, and (c)
the fraction of localised states at large ∆.

model is particle-hole symmetric we show only the regime
n = [0, 1].

To get a feel for the magnitude of the conductivity,
which we measure in units of πe2/(�a0), note that the
Mott ‘minimum metallic conductivity’, σMott , at the band
center [4], is roughly ∼0.03e2/(�a0). Our dimensionless
conductivity σcalc, shown in the figures, can be converted
to real units, σactual, by using

σactual ∼ 100 ∗ σMott ∗ σcalc

where we use σMott = 0.03e2/(�a0). The results we show
in the present spin degenerate problem includes a factor of
2 to account for the two spin channels. This is important
to compare with the magnetic scattering problems later.
The conductivity per spin channel falls below ≈10−2 for
∆ � 8. This implies that beyond ∆ ≈ 8, σ < σMott in the
Anderson model.

The main panel in Figure 3 shows the variation in mo-
bility edge with increasing disorder. Our error estimates
are based on the shift in εc as we change from moderate
to zero filtering of the σ̄(µ,L) data. We show some ear-
lier standard result [36] for comparison. The best current
result on ∆c is 16.5, our method yields ∆c ∼ 17. Our re-
sults on the band edge, Figure 3b, match reasonably with
earlier CPA based results. Note that while the mobility
edge has a ‘re-entrant’ behaviour, the fraction of localised
states in the band, Figure 3c, increases monotonically with
disorder.

3.2 Transport regimes

There are tentatively three transport regimes in the An-
derson model. These are (i) the perturbative Born scatter-
ing regime, described by the Boltzmann transport equa-
tion and the low order corrections in (kF l)−1. This cor-
responds to ∆/W � 1, where W = 12t. (ii) The wide
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Fig. 4. Variation of the resistivity, normalised to the Born
resistivity, with disorder. The firm lines are fits of the form
1 + α1(n)∆2 + α2(n)∆4. Inset shows the coefficients α1, α2.

intermediate coupling regime ∆/W ∼ O(1), and (iii) the
‘scaling’ region, ∆→ ∆c, near the MIT.

We analyse the data, with increasing ∆, in the se-
quence (i) → (ii) → (iii).

3.2.1 Perturbative regime

To leading order, the scattering rate from the disorder is
τ−1
∆ ∼ 2πN(εF )〈ε2i 〉. The second moment of the random

potential is, 〈ε2i 〉 ∼ ∆2/12. Since N(εF ) ∼ 0.13, at the
band center, Figure 1b, the scattering rate, Γ∆ = τ−1

∆ ≈
∆2/(15t).

The three related quantities which define Boltzmann
transport are (i) the scattering rate, Γ∆, defined above,
(ii) the (inverse) mean free path a0/l ∼ 0.03(∆/t)2 at the
band center, and (iii) the Born-Boltzmann conductivity
σB ≈ 1.62(πe2/�a0)∗(t/∆)2 per spin channel, again at the
band center. In addition the optical conductivity should
have the Drude form σ(ω) = σB/(1 + (ω2/Γ 2

∆)), and the
‘width’ in the optical conductivity can be checked against
the magnitude of d.c conductivity.

Using the form for σB , the conductivity at ∆ = 4,
assuming Boltzmann transport, would be approximately
0.1(πe2/�a0) per spin channel, i.e. ∼0.2 in our units in-
cluding spin degeneracy. Our data, Figure 2, gives a value
∼0.19 at the band center. The crude Boltzmann scaling is
obvious from the moderate ∆ results in Figures 1 and 2.
In Figure 4 we attempt to quantify the corrections to the
Boltzmann result, still staying far from the localisation
regime.

The weak localisation corrections that arise beyond
Boltzmann transport control the resistivity in one and
two dimension. These are quantum interference effects,
formally arising from the ‘Cooperon’ corrections. A sim-
ilar argument would lead us to believe that in three di-
mension [1] the leading correction beyond the Boltzmann
results should be δσ ∝ −(kF l)−1. Since (kF l)−1 ∝ ∆2
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and the Boltzmann conductivity σB ∝ kF l, the net
conductivity would be expected to have the form σ ∼
σB(1 − O((kF l)−2)), i.e., σ(∆) ∼ ∆−2(1 − O(∆4)). In
that case, the resistivity should have a form ρ(∆) ∼
ρB(∆)(1 + O(∆4)).

Figure 4 shows ρ(∆)/ρB(∆) plotted against ∆2 for
three densities. We avoid too low a density to keep the
scales comparable. The data are fitted to ρ/ρB = 1 +
α1(n)∆2 +α2(n)∆4, upto ∆2 = 49 and then extrapolated
to ∆2 = 81.

There are two notable features: (i) There is clearly a
non zero coefficient α1(n) so the equivalent of the WL
corrections do not control the leading correction to σB in
three dimension. The coefficients α1 and α2 are shown in
the inset in Figure 4. (ii) The ‘low∆’ fit seems to work rea-
sonably for ∆ � 8, in the sense that ρ/ρB � 2. This qual-
itative correspondence with the Boltzmann result, even in
the regime a0/l � 1, has been noticed recently [34].

The first issue has been explored in detail [37] by Be-
litz and Kirkpatrick who argue that the standard WL
processes do not exhaust the leading corrections to σB

in three dimension. According to them, the perturbative
expansion for σ, in a continuum model, has the form

σ ∼ σB

{
1−a(kF l)−1 − b(kF l)−2 log(kF l)+O

(
(kF l)

−2
)}

where a and b are numerical coefficients O(1). The WL
argument would put a = 0, b = 0.

This form for the correction beyond Boltzmann trans-
port has apparently been observed for electron mobility
in dense neutral gases. The detailed coefficients in this ex-
pression would change in a tight binding model, but the
key result about kF l dependence should survive.

3.2.2 Intermediate coupling

The Boltzmann result alongwith the perturabtive quan-
tum corrections is reasonable probably upto ∆/W ∼
0.2–0.3, although numerically the fit, in the last section,
seems to describe the resistivity even upto ∆/W ∼ 0.75.
The scaling regime, where localisation effects become vis-
ible, occurs within about 10% of ∆c.

Despite the correspondence of our numerical results
with an extrapolation of weak coupling theory, there is
no analytic framework for calculating the resistivity when
the ‘small parameter’ (kF l)−1 ∼ a0/l becomes O(1).

The paramter a0/l is O(1) for ∆/W ∼ 0.5 but the
deviation from the Boltzmann result (at the band cen-
ter) is only about 25%. This has been pointed out re-
cently by Nikolic and Allen [34] and probably arises from
a fortuitous cancellation of higher order corrections. The
self-consistent theory (SCT) of Vollhardt and Wolfle [19]
serves as an interpolating approximation in this regime.

Within the SCT also, the conductivity at band center
remains within 20% of σB for ∆ � 8. The deviation from

the Boltzmann result grows as we move from the band
center to the band edge as evident in Figure 4.

3.2.3 Scaling regime

The scaling regime occurs close to critical disorder, within
about 10% of ∆c. The conductivity in this regime varies
as ∆c − ∆. This regime has been extensively studied to
clarify the critical properties (see, e.g. [19], and references
therein). We have not used a dense enough sampling in ∆
for discussing the critical behaviour, and our system sizes
too are not large enough for high accuracy calculation of
the conductivity in this regime. However, based on results
at ∆ = 16 and ∆ = 17 we can bracket the critical point,
as shown in Figure 3.

3.3 Optical conductivity

The optical conductivity σ(ω) is of intrinsic interest [38]
and also plays a role in our method of determining the d.c
conductivity. There are some exact results known on the
form of the low frequency σ(ω) in the Anderson model.

(i) At weak disorder, when Boltzmann transport holds,
the optical conductivity has the Drude form, σ(ω) ∼
σ(0)/(1 + ω2τ2), where τ−1 ∝ ∆2 as we already know.
For ωτ � 1 this would give us σ(ω) ∼ σ(0)(1 − ω2τ2).
(ii) When the quantum corrections to the d.c conduc-
tivity become important the frequency dependence also
picks up a non Drude form. In the intermediate dis-
order regime, one expects σ(ω) ∼ σ(0) + O(Γ

√
ω/Γ ),

where σ(0) already incorporates corrections beyond the
Boltzmann result. In this regime the conductivity rises
with increasing frequency, for frequencies ω � Γ . (iii) At
the critical point, where the zero frequency conductiv-
ity vanishes, σ(ω) ∼ ω1/3, and in the localised regime
σ(ω) ∼ ω2.

These results originally obtained through different
techniques can be obtained in a unified way via the self-
consistent theory of Vollhardt and Wolfle.

Figure 5 demonstrates the changing character of σ(ω),
at n = 1, as we move from the Boltzmann regime (∆ =
2), to strong disorder (∆ = 16). We show the data for
three system sizes at each ∆ to illustrate the explicit L
dependence in σ(ω,L). This is important for analysing
the extrapolation needed for σdc.

There are two effects of changing system size: (i) the
σ(ω) profile itself can change with evolving system size,
over the frequency range of interest, and (ii) larger sys-
tem size allows access to (more dependable) low frequency
data.

Figure 5a, the weak disorder case, reveals that the σ(ω)
profile changes perceptibly with increasing L, the changes
being O(5%). This implies that in our attempt to access
d.c conductivity, the contribution arises not only from low-
ering the frequency cutoff but also moderate changes in
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Fig. 5. The optical conductivity, at band center, for different L
and ∆. Panel (a) corresponds to the moderate disorder regime,
with a Drude form for σ(ω), while (b) is for a system on the
verge of localisation (vanishing σdc).
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Fig. 6. The approach to the d.c conductivity, with increasing
L in the LT × LT × L geometry. LT = 6 and the disorder is
increased from the perturbative end towards localisation. The
chemical potential µ = 0, so n = 1. σ̄(L), defined earlier in
the text, is the average of σ(ω) over the interval [0, ∆ω], with
∆ω = 1.1/L, at LT = 6. Inset: variation of σ̄(L = 24) with ∆,
to illustrate the rapid fall in the reference conductivity with
increasing disorder.

the σ(ω) profile. At strong disorder, Figure 5b, the pro-
file itself does not change significantly with L and the key
change in the σdc estimate comes from our ability to access
lower frequencies.

3.4 Large L extrapolation

How important is the large L extrapolation to access the
d.c conductivity, i.e., what is the error if we treat the low
frequency average σ̄av(L), at some size L, as the bulk d.c
conductivity? Figure 6 illustrates the extrapolation based
on the sequence {L : 24, 32, 40, 48, 56, 64}, at µ = 0, mov-
ing from weak to strong disorder.

In the weak disorder regime, the optical conductiv-
ity is ‘flat’ for ω � τ−1 so if low enough frequen-
cies can be accessed (given the finite size gaps), the d.c
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Fig. 7. Effect of transverse dimension on the large L extrap-
olation. Carrier density n = 1. The conductivity obtained by
extrapolating the 6× 6× L results are shown as circles on the
y axes.

conductivity can be reasonably approximated. This is the
feature observed at∆ = 2 in Figure 6. However, in the WL
region and beyond, σ(ω) has non trivial frequency depen-
dence at low ω, as evident in Figure 5b. The correspond-
ing low frequency average has significant L dependence.
Since σ(ω) ∼ σ(0) + O(

√
ω), the low frequency average

σav(L) ∼ σ(∞)+O(1/
√
L). The data at∆ = 12, 16 show a

reasonable fit to the square root form. The much stronger
frequency dependence in the strong disorder regime makes
a size dependent study imperative. We provide a discus-
sion of the extrapolation scheme in an appendix.

These results illustrate the work involved in accessing
the d.c conductivity, particularly in the regime of strong
disorder, where a small L calculation (at L = 16 say)
might overestimate the conductivity by a factor of 4. This
discrepancy worsens as ∆ → ∆c and a systematic study
of size dependence is vitally important.

3.5 Effect of the transverse dimension

All the results quoted till now have been obtained via
extrapolation on a 6×6×L geometry. The 62 cross-section
was chosen to allow large L to be accessed. However, it
is important to quantify the error involved in choosing a
specific transverse dimension LT . To this end we studied
the low frequency average σav in a sequence LT ×LT ×L
with LT = 2, 4, 6, 8, 10, 12 and L = 10, 20, 30, for∆ = 2, 10
and 16, and n = 1. The averaging interval ∆ω was scaled
as 1/(L2LT ) in all geometries.

Figure 7 shows σav with respect to L−1 for the se-
quence LT specified above. Panel (a) shows the weak dis-
order, ∆ = 2 result. Beyond LT = 4 all the curves seem to
converge to σ ∼ 0.70 for L→ ∞. The extrapolation from
LT = 6, obtained using L upto 64, is shown as a circle on
the y axis, and is ∼0.68.
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For the strong disorder case, Figure 7b, the extrapo-
lation for LT = 6 is shown to be ∼0.001, while the large
LT data, using L upto 30, suggests that the asymptotic
value could be larger, ∼0.002. This suggests that ‘small’
LT somewhat underestimates the conductivity (remember
LT = 1 is one dimensional, so completely localised), while
finite L overestimates the conductivity. Except very close
to the MIT these errors are small for the sizes we use and,
as verified by the phase diagram, even the critical point is
located to within 5%.

4 Scattering from magnetic disorder

4.1 Global features

The effect of weak magnetic scattering on transport is
quite similar to that of potential scattering. The ef-
fect is contained in the Born scattering rate, τ−1

s ∝
N(εF )J ′2S2, and the weak coupling resistivity ρ(J ′, n)
varies as ∼b1(n)J ′2, where b1(n) is a density dependent
coefficient. However, even at moderate coupling, J ′ ∼ 2,
new effects begin to show up in σ(µ). The conductivity
at half-filling, n ∼ 1, gets suppressed more quickly than
would be guessed based on the Born argument. This de-
viation, and its evolution with increasing J ′, arises from
a fundamental difference between potential scattering and
magnetic scattering on a ‘Kondo lattice’.

There are in fact two main differences that show up
beyond weak coupling. These are visible when we com-
pare Figures 8–10, with Figures 1–4. (i) The conductivity
in the potential scattering case decreases monotonically
(at fixed n) with increase in disorder, vanishing at ∆c(n),
while in the magnetic scattering case, at a generic density,
the conductivity is finite even as J ′ → ∞. The resistiv-
ity ‘saturates’ and there is no metal-insulator transition
with increasing J ′, except in a narrow density window.
(ii) The band center, n ∼ 1, is of no particular signifi-
cance in the Anderson problem, except ∆c being largest.
In the J ′ problem the response for n ∼ 1 is dramatically
different from that in the rest of the band. There is an
MIT at J ′ ≈ 5. These differences can be understood from
an analysis of the strong coupling end.

For J ′/t� 1 it is useful to choose a local quantisation
axis at each site, for the electrons, parallel to the orien-
tation of the spin Si. The coupling J ′Si acts as a strong
local Zeeman field on the electron. Suppose the hopping
term were absent. The two local eigenfunctions at each
site would have spin projections parallel and antiparallel
to J ′Si, with energy ∓J ′/2 respectively. The zero hopping
problem leads to N fold degenerate levels at ±J ′/2. The
‘gap’ J ′ plays a key role at strong coupling. The pres-
ence of hopping generates a degenerate perturbation on
the locally aligned states (say), and the electrons can now
‘hop’ with an amplitude that depends on the orientation
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Fig. 8. (a) Conductivity as a function of Fermi energy, (b)
density of states, for different values of J ′, in the case of pure
magnetic scattering.
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Fig. 9. Dependence of conductivity on carrier density for vary-
ing J ′. The conductivity scale is logarithmic.

of nearest neighbour spins. This mechanism has been ex-
tensively discussed in the context of the double exchange
model.

The mixing introduced by ‘hopping’ broadens the two
levels into bands. For J ′ � W/2 the broadening due to
t does not fill the gap, and the system is insulating at
n = 1. For J ′ below this critical value, Jc, say, the DOS at
band center is suppressed but finite, and the resistivity is
still very large. In summary, the strong coupling physics of
(incipient) band splitting controls the resistivity close to
band center, and creates an essential difference, in terms of
J ′ and n, with respect to standard Anderson localisation.

The saturation in ρ(J ′) with increasing J ′, over most of
the band, occurs because the effect of large J ′ is absorbed
mainly in the band splitting. The effective disorder seen
by the electrons comes from fluctuations in the hopping
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Fig. 10. Resistivity variation with J ′, for several electron den-
sity, from the perturbative limit to double exchange.

amplitudes, explained in the next section, and these are
O(t). The ratio of fluctuation to mean hopping is mod-
erate, so the large J ′ limit leads to a ‘dirty metal’ but
no metal-insulator transition. This is unlike the Anderson
problem where the electrons scatter off potential fluctua-
tions whose amplitude grows with increasing ∆.

From the data in Figures 8–10 we can now identify the
different transport regimes.

4.2 Transport regimes

4.2.1 Weak coupling: J’/W � 1

The magnetic scattering rate Γs is proportional to
N(εF )J ′2, and the weak coupling resistivity should be ex-
pandable in Γs. The lowest order term is well known, cor-
responding to Born scattering, with ρ(J ′, n) ∼ b1(n)J ′2.
The density dependence is similar to that for potential
scattering. Assuming ρ(J ′) to be analytic in Γs, i.e. ignor-
ing possible log corrections etc., Figure 11 shows a fit of
the form ρ(J ′, n) ∼ b1(n)J ′2 + b2(n)J ′4 to the low J ′ re-
sistivity. The J ′2 character dominates upto J ′ ∼ 2, as one
can see also in the σ(n) plot in Figure 9, beyond which the
quartic term becomes important. We do not know if the
coefficient of the quartic term has been analytically calcu-
lated, but the sign of this term is crucial, and is density
dependent, as we discuss next.

4.2.2 Intermediate coupling: J’/W ∼ O(1)

As is obvious from the data in Figures 9, 10, the re-
sistivity saturates with increasing J ′, over most of the
band. The exception is the vicinity of n = 1, and the
lower edge of the band. This suggests that the correc-
tion to the Born resistivity is negative for n away from
n = 1, and changes sign as n → 1. Fitting the data to
ρ(J ′, n) = b1(n)J ′2 + b2(n)J ′4, the coefficient b2(n) illus-
trates the crossover from saturation to escalation, as we
move across the band. Figure 11 shows the fit to this form
and the coefficients are shown in the inset. The ‘Born’
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Fig. 11. Fit to the weak coupling resistivity of the form
ρ(J ′, n) ∼ b1(n)J ′2 + b2(n)J ′4. The symbols are actual data
and the firm lines are fits. The inset shows the n dependence
of the coefficients b1 and b2. Note the sign change in b2.

coefficient is positive throughout the band, without sig-
nificant density dependence in the density interval shown.
The quartic coefficient changes sign, from positive to neg-
ative, as n is lowered from 1.0 to 0.74.

A confirmation of saturation or escalation cannot of
course be obtained from a low order expansion in J ′2, but
even the ‘perturbative’ coefficient provides a hint of strong
coupling physics. It also suggests a smooth evolution from
weak to strong coupling.

4.2.3 Double exchange: J’/W → ∞
In the double exchange limit the J ′ scale acts as a ‘con-
straint’ on the electron spin orientation and no longer
directly affects physical properties, the only effect is to
renormalise the chemical potential. The mapping of the
J ′/t → ∞ problem to a ‘spinless fermion’ problem with
hopping dependent on nearest neighbour spin orientation
has been widely discussed [39]. Transformed to spinless
fermions, which correspond to original electron states with
spin projection ‘locked’ parellel to the local quantisation
axis, Si, the Hamiltonian becomes:

H =
∑

〈ij〉
tijγ

†
i γj =

∑

〈ij〉
t̄γ†i γj +

∑

〈ij〉
δtijγ

†
i γj . (5)

The tij being the spin orientation dependent hopping am-
plitude specified earlier. We can split it into the mean
(uniform) hopping amplitude, t̄, and the fluctuation δtij .

In the ‘extreme’ paramagnetic phase of this model, the
distribution of hopping integrals is exactly known. The
spins are independently distributed on a sphere so the tij
can be worked out. There is no obvious small parame-
ter, since both the mean value of hopping, t̄, as well as

the fluctuation, ∆t =
√
〈δt2〉, are ∝ t. However, the ratio

∆t/t̄ ≈ 1/3. Numerical work by Li et al. [24] had demon-
strated that less than 0.3% of states in the band are lo-
calised under this condition. It was not clear whether the



246 The European Physical Journal B

resistivity at the band center, n = 0.5, could be described
within a Boltzmann approach. Narimanov and Varma [40]
have demonstrated that the mean free path emerging from
the Boltzmann calculation is l/a0 � 8 so the method is
self-consistent.

It seems now that despite the localisation effects as
n → 1 and n → 0, resistivity over much of the band can
be understood within a effective ‘weak coupling’ approach.
The resistivity is ≈(0.1-0.2) ρMott at the band center ac-
cording to our calculation. The resistivity is also ‘particle-
hole’ symmetric, now within the lower band, but notice
that this is cleanly visible only at very large J ′/t.

4.2.4 Virtual orbital mixing: large finite J’

As we move to finite J ′ from the double exchange limit,
the two bands still remain split (down to J ′/t ≈ 5) but
there is a virtual admixture that is introduced. To access
properties in this regime we need to use a two orbital
formulation, with the orbital energies still separated by
a large gap ∼ J ′. The chemical potential remains in the
lower band. The two orbital model, written in terms of
electronic states with local quantisation axis, has the form:

H =
∑

ij

tαβ
ij γ

†
iαγjβ − µ

∑

i

ni − J ′

2

∑

i

(niα − niβ). (6)

We have not seen a Boltzmann calculation of transport
in this regime, but using the two orbital formulation it
might be possible to set up such a scheme. The resistivity
decreases as we move down from large J ′, so using the
correct ‘basis’ the transport may be accessible within a
Boltzmann approach (since the double exchange limit is
itself so accessible). The increase in conductivity, δσ(J ′),
as we move to lower J ′, is found to be proportional to 1/J ′.
A perturbative correction to the large J ′ result, within a
diagrammatic scheme yields the same answer.

4.2.5 Behaviour near band tails

Spin disorder by itself cannot localise states in the center
of the band, since ∆t/t is not large enough. However at
the band tails, i.e., n close to 1 or 0, the kinetic energy is
small and a small fraction of states can still be localised.
As we have indicated earlier, this is �0.3% [24] of the total
number of states for J ′ → ∞.

We do not know if any analytic approaches have been
explored in this localisation problem. This regime would
be relevant to the low doping magnetic semiconductors,
where there is also the possibility of carriers trapping into
spin polaronic states.

4.3 Optical conductivity

The optical conductivity confirms the trends seen in the
d.c conductivity. Figure 12 shows σ(ω) at J ′ = 1 and
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Fig. 12. Optical conductivity: (a) drude response at both n =
0.5 and n = 1.0 at weak coupling, and (b) strong scattering at
n = 0.5 and almost ‘insulating’ response at n = 1.0 at strong
coupling.

J ′ = 4, weak and ‘strong’ coupling respectively, at the
center (n = 0.5) and edge (n = 1) of the lower band.

At weak coupling, over the frequency range shown,
σ(ω) is larger at n = 1, the center of the full band, com-
pared to n = 0.5. The scattering rate is Γs = 2πN(εF )J ′2

which at the band center is ≈0.75. If σ(ω) follows the
Drude form then σ(Γs)/σ(0) should be ∼ 0.5, which is
consistent with Figure 12a. By J ′ = 4, the trend has re-
versed. The n = 1 case is almost insulating, with σ(0) → 0,
while the conductivity at the (lower) band center is finite
and essentially flat on the scale considered. This trend gets
amplified as we go to even larger J ′.

5 Combined structural and magnetic disorder

5.1 Global features

In the presence of both structural and magnetic disorder
it is not possible to show the full density dependence of
transport properties compactly, so we provide two generic
‘cross-sections’ in Figure 13 at n = 0.26 and n = 1.00. In
addition to the effects already noted for potential scatter-
ing and magnetic scattering, there are several novel fea-
tures that arise.

(a) For weak J ′ and moderately large ∆, magnetic scat-
tering weakens localisation effects, as evident from the
intermediate ∆ small J ′ data in Figure 13.

(b) At even larger ∆, where the system would have been
Anderson localised, magnetic scattering converts the
insulator to a metal. The critical disorder∆c(n) shifts
to a larger value ∆c(n, J ′), see phase diagrams in Fig-
ure 14.

(c) In contrast to purely magnetic scattering, where the
resistivity typically ‘saturates’ with increasing J ′, in
the presence of structural disorder the system can go
insulating with increasing J ′.

(d) The ‘additivity’ of magnetic and structural scattering
holds only over a very limited range in ∆ and J ′,
Mathiessens rule generally does not hold.
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The major features, above, can be easily motivated after
we write down the different effective models of scattering
in the various transport regimes in the problem. Some of
this has been discussed earlier by us [27], so we will discuss
mainly those aspects of the problem which have not been
covered earlier.

5.2 Transport regimes

The parameter space of the problem is large, involving
n −∆ − J ′, and it is convenient to first identify distinct
density ranges and then classify the transport/scattering
mechanisms. The roughly distinct density regimes are the
following.

(1) The wide ‘mid band’ region 0.1 � n � 0.9, of which
n = 0.26 in Figure 13a is typical, and we have discussed
the n = 0.5 case earlier [27].

(2) n→ 1, where the response is similar to the mid band
region at weak J ′, but the large J ′ response is distinc-
tive, Figure 13b.

(3) n → 0, where structural disorder and magnetic scat-
tering readily leads to localisation.

5.2.1 Generic density: the mid band region

Let us consider this typical density regime first. For
generic densities, 0.1 � n � 0.9, say, there are tentatively
five different transport regimes in the problem. These are:
(i) Both∆ and J ′ small: the weak scattering regime, where
the effect of structural disorder and magnetic scattering
are perturbative and additive. (ii) Moderate ∆ and small
J ′: spin flip correction to weak localisation. The ∆ depen-
dence shows WL corrections and spin flip scattering weak-
ens the WL correction. (iii) Large ∆, ∼∆c, and small J ′:
spin dephasing driven insulator-metal transition (IMT).
(iv) J ′/t → ∞, with varying ∆: the disordered double
exchange (DE) limit. (v) J ′/t� 1 but finite, and moder-
ate to large ∆: the intermediate coupling ‘metal’.

(i) When ∆ and J ′ are both small the transport can be
understood in terms of additive Born scattering, with the
net scattering rate, Γ (∆, J ′) ≈ a1∆

2+b1J ′2, and the resis-
tivity ρ ∝ Γ (∆, J ′). The ‘window’ describing this regime is
roughly J ′ ≤ 3 and ∆ � 4. The resistivity in this regime is
ρ < 0.1ρMott , i.e., below 100 µΩcm, say. This corresponds
to the bottom left hand corner in Figure 13a and, as our
earlier data showed [27], Mathiessens rule holds.

(ii) At larger ∆ remaining at small J ′, as the WL cor-
rections show up, spin flip scattering [22,23] of the elec-
trons by the random magnetic moments reduces the lo-
calising effect of structural disorder, i.e., ∂ρ/∂J ′|n,∆ < 0.
Just as inelastic scattering weakens quantum interference
by introducing decoherence, spin flip scattering leads to
spin decoherence. We have quantified the ∆ and J ′ de-
pendence of the effect in the earlier paper [27].
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Fig. 13. Global behaviour of the resistivity with varying struc-
tural disorder (∆) and magnetic coupling (J ′): (a) n = 0.26
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corresponds to the upper edge of the lower band and has its
own distinct transport response.
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sections to create a ‘global’ insulator-metal phase diagram for
the ∆+J ′ problem. The densities are marked in the panels. M
stands for a metallic phase while I is insulating. The bounding
curves can be viewed as ∆c(n, J ′). Notice the log scale on J ′.

(iii) At even larger disorder,∆ � ∆c, where the J ′ = 0
system would have been Anderson localised, spin flip scat-
tering opens up a metallic window. The structural disor-
der needed for localisation shifts to a larger value, i.e.,
∂∆c/∂J

′|n > 0. This effect in visible in all the panels in
Figure 14.

(iv) Now consider the DE limit, J ′ → ∞. As we
have discussed in Section 4, the form of the resistivity
ρ(J ′, ∆ = 0) arising from ‘magnetic disorder’ at large J ′

is very different from what one observes in ρ(J ′ = 0, ∆)
at large ∆. This is because J ′ contributes to both ‘band
splitting’ and effective disorder, and the effective disor-
der saturates as J ′/W → ∞ with J ′ controlling only the
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band splitting. The presence of structural disorder in the
J ′ → ∞ problem strongly enhances the resistivity and
localising tendency. Using the transformations used in the
previous section:

H =
∑

ij

tij(θ, φ)γ†i γj +
∑

i

εiγ
†
i γi

≡
∑

ij

t0γ
†
i γj +

∑

ij

δtijγ
†
i γj +

∑

i

εiγ
†
i γi. (7)

The localisation properties of this model have been stud-
ied by Li et al. [24], although they did not calculate the
resistivity. The ‘hopping disorder’ by itself localises less
than 0.5% of the states in the band. On adding structural
disorder the mobility edge moves inward, with localisa-
tion of the full band occurring at ∆/t ∼ 11.5, which can
be approximately understood from the roughly 30% band
narrowing due to spin disorder.

(v) Finally the regime with large but finite J ′ and
strong structural disorder. We have seen that the effect
of small J ′ at strong structural disorder can be qualita-
tively understood in terms of the spin dephasing effect on
Anderson localisation. However, the small J ′ behaviour
with ∂ρ/∂J ′ < 0 quickly leads to a minimum and then a
regime with ∂ρ/∂J ′ > 0. Such behaviour can be viewed
as an extension of the J ′2 term seen at weak disorder, but
it is more fruitful to approach the effect from the strong
coupling DE end, as we do below. Transforming to the
usual local spin quantisation frame and retaining both the
parallel and anti-parallel electron states, we have:

H =
∑

ij

tαβ
ij γ

†
iαγjβ +

∑

i

εini − J ′

2

∑

i

(niα − niβ). (8)

The major source of disorder is still εi, with additional
contribution from the δtαβ

ij . The orbital mixing effect of
‘off diagonal’ couplings, either in terms of mean ampli-
tude or fluctuations, is regulated by the large energy de-
nominator J ′. Although the ‘reference’ problem, J ′ → ∞,
is not analytically tractable in the presence of structural
disorder, it can be shown that orbital mixing generates a
correction to conductivity ∼ O(1/J ′).

5.2.2 Half-filling: n → 1

For n → 1, the effects at small J ′ are similar to (i)–(iii)
at generic densities, discussed above. This is borne out
by the behaviour of ρ(J ′, ∆) in Figure 13b and the phase
diagram in Figure 14d. At large J ′, however, the system
always goes insulating, see Figure 13b, as we have dis-
cussed in Section 4 as well. This effect is obviously due to
the band splitting induced by large J ′ and the vanishing
DOS, N(εF ), at n = 1.0. Thus, for n = 1.0, the metallic
phase is bounded both in ∆ and J ′, Figure 14d.

There is however an interesting and possibly unex-
pected feature in Figure 14d for J � 5.0, where the ∆ = 0
system becomes insulating. We may have imagined that

introducing structural disorder in this system would en-
hance localisation. This however is not true, and struc-
tural disorder actually ‘metallises’ the reference band split
state, and the critical J ′ needed for localisation increases
in the presence of structural disorder.

The origin of the effect above lies in the ‘band broad-
ening’ effect of structural disorder. The ∆ = 0 problem
had a narrow (vanishingly small) gap in the DOS, and
the presence of structural disorder creates finite DOS at
the Fermi level, effectively closing the gap. Since the net
disorder arising from the random spins and the structural
disorder is relatively weak the finite DOS seems sufficient
to lead to a metallic, albeit highly resistive, phase. For
∆ ∼ 4 and J ′ ∼ 5, the resistivity is roughly 0.5ρMott . As
∆ becomes large, or J ′ becomes large, this metallic win-
dow is lost due to the effects either of∆ driven localisation
or band splitting.

5.2.3 Very low density: n → 0

The case of n → 0, for example n = 0.01, say, is unfor-
tunately hard to access with control for the system sizes
that we have used. We expect that the small J ′ behaviour
will be similar to that in the rest of the band, with en-
hanced resistivity (due to the low carrier density) while
the behaviour for J ′ → ∞ will be similar to that for n→ 1
(due to the particle-hole symmetry within the lower band,
0 < n < 1). Localisation in the n → 0 limit, we believe,
is better explored via transfer matrix methods due to the
large accessible size.

6 Concluding remarks

In this paper we have presented controlled results on elec-
tron transport in the background of arbitrary structural
and spin disorder and provided a framework within which
the data can be analysed. We benchmarked our Kubo for-
mula based method in the standard problem of potential
scattering and Anderson localisation. We then explored
the distinct transport regimes that arise in the case of
pure magnetic scattering, as well as the combined effect
of structural and magnetic disorder. In contrast to the ef-
fect of only structural disorder (where the resistivity ‘esca-
lates’ with increasing disorder) or only magnetic scattering
(where it ‘saturates’ with increasing disorder) their com-
bined action can lead to non monotonic dependence and
novel transport regimes. The method developed in this pa-
per can be directly taken over in calculating the resistivity
in the presence of annealed disorder, where accessible sys-
tem sizes rarely exceed ∼103, and has been extensively
used by us in Monte Carlo studies of several “disordered”
electron systems.
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fully acknowledges support by the Deutsche Forschungsge-
meinschaft through SFB484.
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Appendix A: Extrapolation
for the d.c conductivity

It is known that at sufficiently low frequency the opti-
cal conductivity in the 3D Anderson model follows a sim-
ple power law [19] with the exponent depending on the
strength of disorder and electron density. This means that
we can write: σ(ω) = A+Bωα, where the coefficient A ≥ 0
is σdc, while the next term gives the leading low frequency
correction. This form captures all the broad regimes in 3D.
For example, at half-filling: (i) low disorder, Born scatter-
ing, ∆ � ∆c, gives B < 0, α = 2, (ii) moderate disorder,
weak localisation corrections: B > 0, α = 1/2, (iii) critical
disorder, ∆ = ∆c: A = 0, B > 0, α = 1/3, and (iv) lo-
calised phase, ∆ > ∆c: A = 0, B > 0, α = 2.

The form for σ(ω) fixes the form for σav(∆ω,L). Set-
ting ∆ω ∼ 1/L, and using the form for σ(ω) above, we
obtain the three parameter form for σav(L): σav(L) ∼
A + B

(α+1)L
−α. The extrapolation is a least square three

parameter fit to our L dependent data, and has enough
flexibility to cover all disorder regimes.

In practice, a simpler two parameter extrapolation also
works reasonably as long as one is in the metallic phase,
even close to the metal-insulator transition: σav(L) ∼ A+

B
(3/2)L

−1/2 This derives from σ(ω) ∼ A + Bω1/2. Using
this restricted fitting function, the MIT can be roughly
located when A, the d.c conductivity, falls below a preset
limit, 10−6 say, (which in absolute units is a resistivity
∼ 104ρMott). Having located the transition approximately,
the more elaborate three parameter fit can be used to
confirm the metallic/insulating character on two sides of
the critical point. Our MI phase diagrams are constructed
using this strategy.
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